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Abstract. The procedure is described for supersymmetric generation of combined potential and
effective-mass variations, fully isospectral with an original potential. It relies on the standard
supersymmetric technique, accompanied by the coordinate transform method. It enables one to
generate families of isospectral potentials and isospectral effective-mass variations, both generally
different from their original forms, with the number of free parameters larger than in the case of
varying potential only, which may be of interest, e.g., in the design of semiconductor quantum
wells.

1. Introduction

The problem of generating isospectral potentials in quantum mechanics has been considered
for more than 50 years, but recently the research efforts on this topic have been considerably
intensified. A new field, supersymmetric quantum mechanics (SUSYQM), devoted to this
class of problems has emerged. The fundamental problem that SUSYQM deals with is in
finding the family of potentials having the same spectrum of energies as some initial (original)
potential (see, e.g., [1] for a review).

The standard SUSYQM handles the conventional &dinger equation with constant mass
and variable potential. In some instances, however, the less conventionzdiger equation
with both the position-dependent (effective) mass and the position-dependent potential is
employed. The most extensive use of such an equation is in the physics of semiconductor
nanostructures. This field has arisen due to the impressive development of sophisticated
technologies of semiconductor growth, like molecular beam epitaxy, which made it possible to
grow ultrathin semiconductor structures, with very prominent quantum effects (see e.g., [2] for
a review). The motion of electrons in them may often be described by the envelope function
effective-mass Schdinger equation, where the material composition (i.e. the position)
dependent effective mass of electrons replaces the constant particle mass in the conventional
Schibdinger equation. The most popular of these structures is the semiconductor quantum
well, and the Sctirdinger equation here is effectively one-dimensional. Another instance
where such an equation is employed, this time three-dimensional and with spherical symmetry,
is in the pseudopotential-theory-based density functional calculations in solids: to reduce the
computational load, model pseudopotentials with position-dependent electron mass which
replace nonlocal pseudopotentials have been considered [3].
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It should be interesting, therefore, to extend the SUSYQM to handle cases with position-
dependent mass. In this paper we first show how the standard SUSYQM procedure should be
modified to become applicable to systems with position-dependent mass, generating families
of isospectral potentials while leaving the original effective-mass variation unchanged. We
then go to the main topic of this paper: to devise the procedure of generating families of
isospectral Hamiltonians that involve the combination of both the potearidthe effective-
mass variation. All considerations are made for the one-dimensionad@nber equation.

2. Theoretical considerations

Within the envelope function effective-mass approximation the eigenenerjiasd the
envelope eigenfunctiong of the quantum well structure should be determined from the
Schibdinger equation which takes the form [2]

d/ 1 dy

& (md—z) +qUo()y = qEY = Hoy @

whereg = 0.2627 if energy, length and effective mass are expressed in eV, A and free electron
mass units, respectively. The effective mass is taken to be strictly positives (z¢.> O for
all z.

Using the standard SUSYQM procedure [1] the initial Hamiltonian is first factorized as

I'}O = AA+AA +qkEo. (2)

In equation (2)Eo is one of the bound state eigenenergies of the Hamiltorlgnand the
operatorsA™ and A have the form

o4 1t + W(z) A= d+W() (3)
T dz Jm(@D) ¢ - Um(p) dz ¢
whereW (z) is the superpotential, which is the solution of the nonlinear differential equation
d w
W2——< >+ Eo—Up) =0. 4
=\ o q(Eo — Uo) (4)
The solution of equation (4) may be written as
1 d. .
W) = ———=—IIn 5
@) = == I Yo(2) (5)

where(z) is the general solution of the Séttinger equation (1) foE = Eg. If yo(z)
denotes the bound state wavefunction (and hence is a square-integrable function), then

- * m(Z)
= dz’ 6
Yo(z) Iﬂo(z)[c"' L V2@) Z] (6)

whereC is an arbitrary constant. Using (6) the expression for the superpotential may be written
as

W@ = ——— 2 fin ()] - ——— i{ln[c+/zﬁd’]}=W()+W() 7)
YT T Umo e T U e 7 | I
The next step is to make the new Hamiltonian

ﬁl = AA+ +qEp (8)
its eigenspectrum being identical to thatdf, except that the state &t= E; is missing. The
HamiltonianH; acting upony,, then gives

Ao d 1 dyy
lel-‘az(md—z

)+£]U1(Z)1/f1=qE¢1 ()]
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where the new potentidl;(z) is given by
2 dw 1 d® 1
g/m dz  q/mdz? Jm’
We should also note that the superpoterifidk) and the potential/;(z) are related by

U1(z) = Uo(z) — (10)

d /W
W2+d_z (ﬁ) +q(E0—U1) =0. (11)

By inserting the expression for the superpoteritiak) into equation (11) we find that the term
Wa(z) causes a singularity iti; (z) for any value of the constagt. FurthermoreW,(z) causes
a singularity in the expression for wavefunctiofig; (z), and such wavefunctions would not
be square integrable. Therefore, one has tdisg) = Wi1(z), and the general solution of the
Schibdinger equatioﬂfllwlo = g Eoyr10 takes the form

At+1(2)

Yo(z)

where is a constant. WithE, not being an eigenvalue i, this solution is not square
integrable (i.e. normalizable) for any valueixfThen, another Hamiltonian is constructed as

I'}z = AAIAA]_ +qkEp. (13)

Y10(z) =

1(z) = f ) V() d7 (12)

The operatorsi} and A in equation (13) have the same form & and A, except thatjg

is replaced byy1o. The HamiltonianA, is fully isospectral withHp, and the potential in it,
Ua(z) = Uss(2), has the form

Uss(@) = Uoo) — ~—2— {2 S+ 1o 14)
)=U2) — —FV——=— 11— z
58 0 gv/m(z) dz | v/m(z) dz

where the constant may take any value outside the rangel] 0], otherwise the potential
and the eigenfunctions would have singularities. The eigenfunctigrsz), corresponding
to this supersymmetric Hamiltonian, are related to the eigenfunciipns of Hyp via

Vssi(@) = —Y(2) + ‘”;’(i)—f(z(f) i(2) = /_ dowds i #0 (15)
JOF D)
Ysso(z) = )~+—[(Z) i=0. (16)

It should be noted thato in the above equations may denote any bound state of the Hamiltonian
Hy, not necessarily the lowest state.

A more general method of generating isospectral potentials has been described in [4]. Here
one starts with the potentiél; (z) and the corresponding Hamiltonian is factorized according
to (see [5])

a A d 1 d
Y= A*A tge=—— | — — ) +qUi(z 17
0 q & (m(z)dz) qUqy(2) (17)
where the operatord* and A** have the same form ad and A* except thatW(z) is
replaced byW*(z). The factorization energy here is an energy below the ground state,
and the corresponding solution is denoted/gg(z), i.e., Hiy)) = gey},. It follows that

A*A*y* = 0, wherebyA**y*, = 0, and expression for the superpoteniial (z) directly
follows:

1 d *(2)
W*(z) = —|L}. 18
@ mz[”m (18)
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Now we define the new Hamiltoniad; = A**A* + ge, with a new potential/; (z).

Having in mind thay (U; — U§) = A*"A* — A*A*" we find the expression fdv; (z):
2 dw* + 1 d_zi
gvm dz  qymdz? Jm’

The energye is implicitly contained in the potential/;(z) via the solution of the

Schidinger equationy;. (z). Having in mind thatH; v = gey?, ie. A*y% = 0, we
find

Ui (z) = U(2) — (19)

Jm(z)
Vi) = - 20
1 ) (20)
Eigenenergies of the Hamiltoniaﬁg‘ areEq, Es, ..., E,, ..., and the corresponding
eigenfunctions arey;,, ¥3o. - ... ¥, ... With the potentialU; (z), the eigenfunctions
corresponding to these energies #fg:
AA*+ * 1 du* * gt
wl;kl(z) — n0 — <_ n0 + _n*O wGO) . (21)
\/Q(En _6) \/q(En _6) dZ 0 dZ

The Hamiltonians with potentiald; (z) andUg (z) therefore have identical spectra, except
that the one witlU; (z) also has a state at energyits eigenfunction being given by (20
the functionsy;, as well asy.1, are to be free of singularities it is necessary thigf(z) is
nodeless, if the new potential(z) is to have no new singularities other than those which
U; (z) possibly had, it is again necessary that,(z) is nodelessThe condition necessary for
-0(z) to be nodeless is given in [4,6]. Assuming we have one nodeless soljtjan of the
Schiddinger equation with the potentiél (z) at energye, the general solution has the form

© m(2)
Vi@ = ¥, (z)[k+/ d ]
0 ? oo Y22
wherea is a constant. Ify, is nodeless then the value of the integral in (22) will be between
zero and

(22)

oo !/

o = / RSO (23)
—00 we*,f(z/)

It follows that v}, (z) will be nodeless providedl is outside the regio—1I,.., 0). Clearly, if

one sets some finite lower limig in the integral (22) thenits values range betwggnandl,,, ..,

implying thaty’,(z) will be nodeless provided is outside the regiot—1I,.ax, —Inin). It may

be interesting to explain the method of generatliig (z) for energies below that of the ground

state. One first generates the solutipf)_(z) with the boundary conditio, (—oc) = 0.

This solution has no zeros, and may be taken to be a positive, monotonously increasing function.

Then one generates the solutigf),, (z) such thaty?, . (co) = 0. It also has no zeros, and may

be taken to be a positive, monotonously decreasing function. A particular solution which also

has no zeros may be written as a linear combinaditi ,_(z) + By, (z), wherea and g

have the same sign. For simplicity one may take g = 1, i.e.wjp(z) =Yl (@) +Y (2).

We have presented in the above paragraph the method given in [4] generalized to the case
of position-dependent effective mass. If the initial potential is that of the linear harmonic
oscillator, and if the energy is downshifted by exacthA from the ground state (where
A denotes the spacing between subsequent states), then the pai¢atiatiepends on the
parametek, and the energy spectrum is identical to that of the linear harmonic oscillator. This
case was discussed in [7]. The case of an electron in Coulomb potential was analysed in [8,9].
The potential corresponding to azimuthal quantum nuniber1 was taken as initial, and
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the energye was the ground state energy foe= 0. The resulting potential; (z) had the
eigenspectrum identical to that of the Coulomb potential.

Both methods discussed here are known in the literature for the constant-mass case, and are
here extended to handle the position-dependent effective-mass case. Also, both methods enable
the generation of isospectral (or almost isospectral) potentials depending on a free parameter
A. Later, we will concentrate only on the SUSYQM case covered by equations (14)—(16),
though the considerations may be rather straightforwardly applied to the case described by
equations (19)—(21).

The modified SUSYQM procedure, as described above, enables one to generate the family
of potentialsUss(z, A) fully isospectral with the initial potentid/y(z), while the effective-
mass variatiom:(z) remains unchanged. A question now arises: is it possible to generate the
family of isospectral combinations of potential and effective-mass variations, both generally
different from their original forms? The problem may be solved by using the coordinate
transform method together with the SUSYQM transform, as will be described in further text.

We introduce a new coordinate related to the old coordinatevia z = g(y), where the
function g(y) will be specified later. Also, we introduce the notation(z) = m[g(y)] =
m(y), ¥(z) = ¥[g(y)] = ¥ (y), etc. The Schidinger equation (1) then takes the form (with

"= d/dy)

u" +{Ay) +qm[g WMIPLE — U]t =0 (24)
where the new function(y) is related toy (y) via
u(y) = const: [m(y)g' (N1 (y) (25)

and

_my 5 (@)Z
dm(y) 16\ m(y) /)~

Itisimportant to note that equations (1) and (24) have identical spectra. With the wavefunctions

¥ (z) being square integrable, i.€(z)|¥(z)) = 1, setting const 1 in equation (25) and

having in mind thain(z) > 0 we find that(u(y)|u(y)) = 1 as well, i.e., the functions(y)

also are square integrable. Now, choosing the fungtion so to satisfy

A(y) (26)

m(y)g'(»?*=1 (27)
recasts equation (24) into
v rq| £~ {uoe - 224 u=0 (28)

which is the Schidinger equation with the new potentid}(y) — A(y)/q and the constant
effective mass# = 1 in free electron mass units). This form is simpler than equation (1),
since it does not involve the position-dependent mass, and it has been extensively studied
within the SUSYQM. Applying the SUSYQM to equation (28) we arrive at

A
Uss+q [E - {Qés(y) - %H uss =0 (29)
where
2
Uss(y) = Up(y) — g[ln{k +I(MY = Uy(y) + AUss(y, 1) (30)

which follows directly from equation (14) by setting(z) = 1. The corresponding
wavefunctions sg(y) are obtained from equations (15) and (16). The supersymmetric potential
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U%s(y) and the quantityl (y) are fully determined oncBo(z) andm(z) are specified. In fact,
equation (27) may be written as

/O m@dz =y =g2) (31)

which defines (though in implicit form) the functiqg(y), which thus enables finding (y)
andU,(y), and hence alst s, ().

The Schodinger equation (29) corresponds to some 8dimger equation of the form (1)
inthe real space coordinate framg, but with modified effective-mass and potential variations
mss(zss) andUss(zss), where the coordinatgyg is related toy viazgs = gss(y), and

mgs(Mgss(M]® = 1. (32

In order to go from equation (29) to
d 1d
- <— ’ﬁss) +qUss(zss)Wss = qEVss (33)
dzss \mgs dzgs
it is necessary to satisfy
A A
Uss) — 280 e 5y - % (34)

whereU ((y) = Uss[gss(¥)] = Uss(zss), andAgg(y) has the same form as(y) except that
mgs(y) replacesn(y). The wavefunctioniw (y) andugs; (y) are related by

VYoo (V) = Vmgs(Mussi(y). (35)
With m () determined, as will be explained further grs(y) = zss may be found from
(32), and thenyg; (z) also follows from (35). The wavefunctions obtained this way satisfy
(Yssi(zss)[¥ssi(zss)) = 1.
The right-hand side of equation (34) is fully determined, and on the left-hand side there
are two unknown functionsu ¢ (y) andU ¢¢(y). One possibility of solving equation (34) is
to write it as two equations:

Ugs(y) =Uy(y) + L AUss(y, A) (36)
A A
_ Sj[(”=— W) 4 (14— ) AUss(y. 1) (37)

where¢ is a dimensionless weighting parameter. Two characteristic values of this parameter
are¢ = 0 and¢ = 1. These two cases will now be analysed in more detail.

() Thecase = 1. Inthis case equation (37) becomes; (y) = A(y), or, more explicitly:
mss(y) 5 [m’sg(y)r _m'y) 5 [m/(y)}2
dmgs(y) 16 [mgg(y) dm(y) 16 m(y) ]~

This is a nonlinear differential equationsin(y), sincem(y) is known, as noted before. Now,

introducingm ¢ (y) = RS’SZ(y) andm(y) = R~?(y) we arrive at a more convenient form:

_R'(&Y + (R')? }:
2R(y) 4R?(y)

This type of nonlinear equation has been studied many years ago, and is well documented in
[10]. Following the theory presented therein, the soluigg(y) of the nonlinear equation (39)
equalss?(y), wheres(y) is the general solution of the linear differential equation

" "2
s”+|:—R—+(R) :|s=0. (40)

(38)

2Rss(y)Rys(y) — (Rig)? + 4R [ (39)

2R  4RZ
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Sincem ¢ (y) = m(y) certainly is a particular solution of equation (38), the(y) = +/R(»)
is a particular solution of the linear equation (40). From the theory of second-order linear
differential equations, another particular solution of equation (40) is

y d !
5200 = VR() / - (41)
o RO
and the required dependenggg(y) may be written as
m(y)

[C1+Ca fg /m(y)dyT]*

whereC; andC, are arbitrary real constants. Taking account of equation (32) the dependence
of the ‘new’ coordinate gs on y may be written as

gss(y) =1z /y dy’ /y (C1+Co fo) Jm(y") dy”)? dy

SS =755 = — .
o Vmg(¥) Jo Jm0)

The dependencess(zss) may then be found from equations (42) and (43). A special case

occurs wherC, = 1 andC, = 0. Thenm(y) = m(y), wherefromgss(y) = g(y) = z,
i.e. mgs(z) coincides with the initial effective-mass dependencg). In all other cases

mss(z) # m(z).
Introducing the notatiom(zss) = g(gs‘sl(zss)) and y(zss) = gs‘sl(zss), as well as
JOy) = (mss(y)/m(y))l/z, the new supersymmetric potential may be written as

2 d
q/Mgg 6)) ?SS
JOYEIn(zss)] dZss} } (44)

or=tad
X ———————In|A1+
mge(y) dzss —00
The functionUys(zss) obtained in this way depends on three free parameters<l;, and
C, (while mgs(zss) depends only oy, andC,). In the special cas€; = 1 andC, = 0
equation (44) reduces to equation (14), as is indeed expected (note that equation (14) has been
derived in a different way).

The normalized wavefunctions for the new system are given by

Vo) [°2 v Mo (y) dzgs
A+ [58 T(n)YE() dzss

(42)

mss(y) =

(43)

Uss(zss) = Uoln(zss)] —

z

Vio(zss) = V() |:—1/fi('7) + (45)

and

¥i(zss) = VLA + 1) Voln) (46)

A+ [ T W) dzss

If C1 =1 andC, = 0 equations (45) and (46) turn into equations (15) and (16).
(if) The case; = 0. Inthis casd/ ((y) = Uy(y) andAss(y) = A(y) —qAUss(y, A) =
h(y, 1), and the nonlinear differential equationsirn,(y) now takes the form

2RssRgs — (Rys)? + 4RSsh(y. 2) = 0 @7
and its general solution may be written as
1
mgg(y) = (48)

[C151(y) + Cas2(1)]?
wheres; »(y) are particular solutions of

s"+h(y,\)s =0. (49)
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The functionss;(y) andsz(y) now cannot be written explicitly in analytic form (in terms of
m(y)), as was possible in case (i). With,(y) determined according to (48), the procedure
of findingmgs(zss), Uss(zss) andl/fgs(zSS) is fully analogous to that used in case (i), e.g.,

Uss(z) = Uo[n(zss)]. (50)

For all other values of the ‘weighting’ paramete(i.e. ¢ # 0 and¢ # 1) the procedure is
fully analogous to that in case (ii).

3. Numerical examples and discussion

For the purpose of numerical illustration of the theory given above, we use the textbook models
of a rectangular quantum well with infinitely high barriers, and of a rectangular well with finite
barriers and different masses in the well and barrier regions. In the first example the well width
is 24 and the electron effective-mags' is constant. This simple model allows most of the
procedure to be done analytically. For the same reason we consider case (i) only.

The initial potentialls(z) and mass:(z) are thus

Up(z) =0 and m(z) = m* for —d<z<d. (51)
The transition to the corresponding dependencesisrsimple ¢ = z+/m*):
Uy(y) =0 and m(y) =m* for —dvm* <y <dvm* (52)
while equation (28) in this case becomes

u' +qEu=0 (53)

with the boundary conditiong(+d+/m*) = 0 and{u|u) = 1. From textbook quantum
mechanics it is known that the normalized solutions of equation (53) are

sin| . 4
() = iy Y= —"" 54
ui (y) ﬁg/n?{cos}( ) N (54)
where co¢) corresponds té = 1,3,5,... and sin(-) toi = 2,4, 6, .... Eigenenergies are
given by
2
b4
E, = ——i° 55
g2 (55)
The family of potentials isospectral to the original (51) is described by
2
Uss(y, A) = Upy(y) + AUss(y, A) = AUss(y, A) = —6—1“”[)L +I(n]Y. (56)
Choosing the supersymmetric transform to be done in respect to the ground state, we have
Y 1 sinY)
I(y)=—+=+ S7
)=+t — (57)
and
1 . [1+ cog2Y)]?
Uss(y,\) = ——————{msiny) + ———— 58
ss(y, ) d B D TO)] {77 In(Y) T+ 10)] (58)
Using equation (42) the: ;¢ (y) dependence may be written as
m*
mgg(y) = ————F——. (59)
53 [C1+ Co/m*y]4

Instead of constants; andCs it is more convenient to use new constamtands defined as
o = 3Com*d and g=C3 (60)
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so that equation (59) becomes

m*

(B3 + 7=
The coordinategss andy, from equation (43), are related by

3
5= 2 [(ﬂm + wLmy) - ﬂ} 62)

and the final expression for the effective mass reads

mgo(y) = (61)

m*

(azss/d + B)43
while Ugs(zss) may be obtained by substituting (62) into (58). However, this expression is
too cumbersome to be reproduced here.

All physically differentmgs(zss) andUss(zss) will be obtained by giving only positive
values tox andg. It follows from equation (63) thatzss(zss) is @ monotonously decreasing
function if 383 > «, otherwise there exists a poifdso where the effective mass becomes
infinite. This second case will be discussed in more detail below.

The SUSYQM transformed wavefunctions, as they depeng o@ad

ugsi (y, M)~/m*
Wy () = Jigs (s (v, ) = % (64)
3d/m*

The wavefunctionsgs; (v, ) may be written analytically, by using equations (15) and
(16), as well as (54) for the rectangular well. The functigris; (zss) are then simply found
by combining equations (64) and (62). These are inversely proportionattezgss/d + 8. If
38Y3 > «, r is positive for all relevant values afgs. On the other hand, if 873 < «
then a pointzsso exists wherer changes its sign, which brings about the wavefunction
singularity. In the vicinity of this point the singularity is of the form cofisks — zss0)¥°,

i.e. ‘ﬁ?sl' ~ (zss — zss0)~%/3, which means that the wavefunctions are still square integrable,
regardless of the singularity, and are physically acceptable.

Numerical results are presented for a 100 A wide quantum weH 60 A) with a constant
effective massig* = 0.08 in free electron mass units). Such quantum wells are realizable by
using ternary semiconductor alloys, like,Ma;_,As, although the assumption of infinitely
high barriers is clearly an approximation. In figures 1 and 2 the calculated effective-mass and
potential variations are given in cases= 1.4 andg = 1.5 (i.e. 3% > «), ora = 8 and
B = 1.5(i.e. 33 < «). The value of the parameter= 0.5 was taken, as both small enough
to produce the output quite different from the input (coincidence of the two occurs in the limit
A — +00), and also large enough that the output functions are not ‘unphysically’ deformed
(which occursinthe limit. — 0). Itis also interesting to note that, by changing the values of
andp withinther — +oo limit, itis possible to construct the supersymmetric potentials which
are rectangular, but have different widths from the original, and have nonconstant effective mass
(full reproduction of the original potential and the constant mass occuss fo0 andg = 1,
the corresponding dependendés (zss) andmgs(zss) are displayed in figure 3). Finally, in
figure 4 are displayed the wavefunctions of the lowest three states of the Hamiltonian obtained
with « = 8 andB = 1.5 (the case of 82 < «), when the wavefunctions have singularities
but are normalizable.

In the second example we take the rectangular potebitél) and the effective-mass
m(z) variations, i.e.lUp(z) = 0 for |z| < d andUy(z) = Vj otherwise, whilen(z) = m,, for
|z| < d andm(z) = m,; otherwise. This model corresponds to the conventional semiconductor

mss(zss) = (63)
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z/d

Figure 1. Themgs(z) and Uss(z) calculated when starting with a rectangular infinitely deep
quantum well, 2 = 100 A wide. Other parameters:* = 0.08 (in free electron unitsyy = 1.4,
B =15, andr = 0.5. Arrows indicate from which vertical axis to read the values on the curves.
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J Tl =004
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zss/d

Figure 2. Same as in figure 1, but far = 8 andg = 1.5.

guantum wells, which have been extensively studied, both theoretically and experimentally [2].
The y(z) dependence is here somewhat more complicated than in the previous example. By
solving the differential equation (27) with the initial conditipry = 0) = 0 we find

Ya ¥ /mp(z — d) z>d
y =] V/Muz lz| <d (65)

—Ya *+ /mp(z +d) z<—d

wherey, = /m,d. The well region thus maps inty| < y;, and the barrier region into
Iyl > yqs. Them(y) andU,(y) dependences are very simple, being respectivglyand
zero in the well, andn, andV; in the barriers. Using equations (42) and (43) we may thus
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Figure 3. Same as in figure 1, but fer = 0 andg = 1, which is equivalent to the standard
SUSYQM case. Comparison of these results against those in figure 1 indicates substantial
differences on the qualitative scale.
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Figure 4. The normalized wavefunctions of the lowest three states, obtainedwith8 and
B = 1.5, for the quantum well with parameters given in figure 1.

find analytic expression for the effective-mass variatig (zss). In analogy to the previous
example we introduce the new constamtss 3Com,,d andg = C3, and find that inside the
well mgs(zss) is given by equation (63) in whicih* should be substituted by,,, where the

well region (~d < z < d) maps iNtozgsmin < 2 < Zss max ON thezgs axis, where

2
(255)" = d <aﬁl/3 + g23 + ‘;‘—7) (66)

with the constantsr and 8 having only positive values. Inside the barriers thgs(zss)
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dependence reads
mp

mss(Zss) [S7m(zss — z1.2)]4° v
wherez; is used in (67) fotss{zssmin @Ndz2 fOr zss)zssmax, With z1 2 given by
1/3 4 ¢\3y 1 d
L, B [1 ~ _} _pd (68)
o Fm *

In equations (67), (68}, is the ratio of effective masses in the the barrier and the well,
rm = myp/m,. Along with the above expressions thg (y) dependence should be given.
Inside the well it is already given by equation (62), with substituted byn,,, while in the
barrier region we find

d 0 o o /m 3
zss(¥) =z12+t — |BE 5 F5vrm t Ly (69)
ary, 3 3 3dm,,

wherez; and lower signs are used fegs < zssmin, While zo and upper signs apply for
78§ > ZSSmax-

Due to the discontinuity of the effective mass at the well/barrier interfacesy e
functions are found as follows. Assuming all the solutions of equation (28) are normalized to
unity, the constant in equation (25) equals one, so (25) may be written as

Y(z(y))
= 2 70
"0 =7 m(z(y)) (70)
i.e., in this case
¥(z(y))
= 71
== o (71)

in the well (barrier) regions. The functiongy) have discontinuities af = +y,; because
my, # my. Finally we note that the wavefunctions(z) are determined in the textbook
manner, and the corresponding expressions will not be reproduced here.

Choosing the supersymmetric transform to be done in respect to the ground state, we have

_ B 2[ 2uouy B ué
Forn =B Ty [Hl(y) [A+1<y>]2} 72

whereuo(y) = ¥o(z(y))/~/m(z(y)) andI(y) = f;voo uS dy’. It is here interesting to note
that, because of the discontinuitiesudfy) aty = %y, the functionU ¢¢(y, 1) acquires the
s-functions at these points, i.e.,

_ _ 4 uo(ya) 1 1
Ugs(y = £ya, A) = :Fq 1y (m W) Yo(z(£4))8(y F ya)- (73)

The expression fof (y) is found analytically, but is too cumbersome to be reproduced here.
Now, combining the expressions fbf. (v, A) andzss(y, «, 8) we find the final expression
for Uss(zss, A, @, B), which can also be written in a fully analytic, though quite cumbersome
form. The expressions for the Wavefunctioin&i (y) are obtained from equation (64). These
are continous everywhere, includingyat= +y,. Then, using thess(y) dependence given
above, we finally find theyss; (zss) wavefunctions. It is interesting to note a peculiarity
occuring in these wavefunctions in the present example. Having in mind-tkak y < +oo
andm(y) > 0, it follows from equation (42) that for whatever values of the const@pisnd

C, (i.e.,«a andp) there exists a pointy where the denominator of (42) becomes zero. In the
vicinity of the (corresponding to thgs axis) pointzgso the wavefunctionyss; (zss) diverges
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Figure 5. Themgs(zss) andUss (zss) calculated when starting with @2= 100 Awide rectangular
quantum well, with the barrier heighfy = 300 meV. The effective masses in the well and the
barrier amount ten,, = 0.08 andm; = 0.12 (in free electron mass units), respectively, and the
transform parameters ase= 1.4, § = 1.5, andx = 0.5.
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Figure 6. Same as in figure 5, but far = 0 andg = 1, equivalent to the standard SUSYQM case.
Qualitative differences from the results in figure 5 should be noted.

as~consf (zss — zss0)*3, thus remaining normalizable, just as was the case in the previous
example.

To give a specific example, we made numerical calculations starting with a 100 A wide
quantum well with the effective mass in the wel], = 0.08 and in the barrierg;, = 0.12, and
the barriers heighty, = 300 meV. These parameters correspond to a realistic semiconductor
quantum well based on AGa,_,As alloy [2]. In figure 5 we give the calculatedss(zss) and
Uss(zss) functions for the same set of parameters as in the previous example, +€1.4,
B = 15, andr = 0.5. We note that inside the barriéfsgs(zss) is very close toVy but
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Figure 7. The normalized wavefunctions of the lowest three states of the quantum well with the
parameters as in figure 5. Note that the wavefunctions in the vicinitysgfare nots-like, but are
very sharp and the detailed shape cannot be displayed (see the text for more discussion).

changes considerably inside the well, while the effective magszss) varies considerably
throughout the structure, and has a singularitysgs ~ 49 A. The corresponding results for

o = landg = 0, which is the case of classical supersymmetry, are givenin figure 6. Here only
Uss(zss) differs from Up(z), while mgsg(zss) = m(z). It should be noted that thefunction
contributions to the potentidlss(zss) atzssmin andzssmax, €quation (73), are not displayed

in figure 5 and 6. Finally, in figure 7 we display the wavefunctigng; (zss) for the case

a = 1.4 andg = 1.5. With the pointzgso being rather distant from the extremaugfs; (),

the wavefunctions/ss; (zss) each acquire an additional extremum due to the singularity at
zsso- This is in contrast, e.g., to the wavefunctiong (zss) andvss2(zss) in the first case
considered in this work, because there the pgigé was close to the extrema ofg; ().

4. Conclusion

Using the coordinate transform method the procedure of the supersymmetric transform was
generalized to generate isospectral Hamiltonians with both the potential and the (variable)
effective mass different, with adjustable degrees, from the original ones. In this respect the
procedure differs from the standard SUSYQM which affects only the potential and leaves
the effective mass, even if position-dependent, unchanged. Families of isospectral potentials
depend on three, and families of effective masses on two free parameters, while the standard
SUSYQM introduces one free parameter. The increased number of free parameters may be
advantageous, e.g., in using this technique for the design and optimization of semiconductor
quantum wells for some applications [11].
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